SSS One Mathematics Objective Exam Questions

1. The decimal part of the logarithm is called ______
A. Mantissa
B. Difference
C. Integer
D. Characteristics
2. Express π€πŸ’π12 to base 10
A. 27010
B. 1035610
C. 149910
D. 120410
3. What is hexadecimal in number system?
A. Means base 10
B. Means base two
C. Means base 12
D. Means base 16
4. Expression 0.101012 to denary
A. 2132ten

B. 1732ten

C. 1132ten

D. 0.101𝑑𝑒𝑛
5. Simplify 12 + 7 in mode 5
A. 4mod5
B. 3mod5
C. 2mod5
D. 5mod5
6. Evaluate 5 X 6 in mode 10
A. 3
B. 2
C. 0
D. 6
7. Write 3.74 x 105 in ordinary form
A. 3740
B. 3740000
C. 374000
D. 0.00374
8. Express 200000 in standard form:
A. 2.0 x 104
B. 2.0 x 10-4
C. 2.0 x 105
D. 2.0 x 10-5
9. Express 0.0000085 in standard form:
A. 8.5 x 106
B. 8.5 x 105
C. 8.5 x 10-6
D. 8.5 x 10-4
10. Simplify πŸ‘5 𝐱 πŸ‘3 in index notation:
A. 32
B. 37
C. 39
D. 38
11. Write the value of 9π‘Ž3 x π‘Ž-5 in index notation
A. 9π‘Ž-2
B. 9π‘Ž3
C. 9π‘Ž5
D. 9π‘Ž
12. What is the value of 𝑑4 ÷ 𝑑4 in index notation:
A. 𝑑8
B. 1
C. 𝑑
D. 1/𝑑
13. Simplify 5π‘₯2 x 4π‘₯0 x 2π‘₯-6
A. 40π‘₯12
B. 40π‘₯4
C. 40π‘₯-4
D. 40π‘₯-12
14. Evaluate (πŸ‘4)2
A. 36
B. 32
C. 3-8
D. 38
15. Simplify 813
A. 2
B. 3
C. 4
D. 8
16. Simplify 416×413
A. 426
B. 2
C. 416
D. 413
17. Simplify (827)23
A. 2/3
B. 3/2
C. 4/9
D. 0.296
18. Simplify (827)-23
A. 2/3
B. 3/2
C. 4/9
D. 9/4
19. Group collection of distinct elements is termed ___________
A. Set
B. Venn diagram
C. Complement
D. Factors
20. A set without element is called _____________
A. Subset
B. Null set
C. Union set
D. Intersection
Use the information below to answer questions 21 and 22
A = {1, 2, 3}, B = {1, 2, 3, 4, 5}

21. What is A ∩ B
A. A ∩ B = { }
B. A ∩ B = {3, 4, 5}
C. A ∩ B = {1, 2, 3}
D. A ∩ B = {1, 2, 3, 4, 5}
22. Find A ∪ B
A. A ∪ B = {2, 4, 6}
B. A ∪ B = {2, 4}
C. A ∪ B = {1, 2, 3, 4, 5}
D. A ∪ B = { }
Use the information below to answer questions 23 and 24
If πœ‡ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 𝐴 = {1, 2, 3, 4}, 𝐡 = {2, 4, 6},

23. find 𝐴′
A. 𝐴′ = {1, 2, 3, 4}
B. 𝐴′ = {2, 4, 6}
C. 𝐴′ = {5, 6, 7, 8, 9, 10}
D. 𝐴′ = { }
24. find A ∪ B
A. A ∪ B = {1, 2, 3, 4, 6}
B. A ∪ B = {1, 2, 3, 4}
C. A ∪ B = {2, 4, 6, 8}
D. A ∪ B = {5, 7, 8, 9, 10}
25. Interpret the Venn diagram


A. A ∩ B ∩ C
B. (A U B U C)′
C. A ∩ B′ ∩ C
D. (A ∩ B ∩ C)'
26. Find the solution of 3π‘₯ = 5 (Mod4)
A. 5/3
B. 3
C. 5
D. 3/5
27. 𝑃 varies directly as 𝑄. Find the equation connecting P and Q. if 𝑃 = 12 and 𝑄 = 60.
A. 𝑃 = 10𝑄
B. 𝑃 = 15Q
C. 𝑃 = KQ
D. 𝑃 = 𝐾𝑄2
28. Solve for π‘₯ in the equation: 4π‘₯ − 8 = 0
A. 2
B. 3
C. 4
D. 8
29. Find the value of π‘₯ in 2(3π‘₯ − 2) = 8
A. 2
B. 3
C. 4
D. 5 30. Find the value of 𝑦 in the equation: 3(𝑦 + 4) = 4(𝑦 + 1)
A. 5
B. 4
C. 6
D. 8
31. Simplify 223-(212-145)

A. 5915

B. 5215

C. 5930

D. 5230
32. Evaluate the logarithm of 1.376
A. 0.1386
B. 1.1386
C. 0.3861
D. 1.8316
33. Express 0.00562 in standard form
A. 5.62 × 103
B. 56.2 × 10-3
C. 5.62 × 10-4
D. 5.62 × 10-3
34. If 32π‘₯ = 27 what is π‘₯?
A. 2/3
B. −2/3
C. 3/2
D. 1
35. Find π‘₯ if 4x=212×8
A. 4
B. 5
C. 3
D. 2
36. Perform the operation 1010002 − 11012
A. 101112
B. 111012
C. 111102
D. 110112
37. Convert 8910 to a number in base 2
A. 10110012
B. 1100102
C. 10011012
D. 10100102
38. Simplify (4π‘Ž + 3𝑏) − (𝑦 − 3𝑏)
A. 4π‘Ž + 6𝑏 − 𝑦
B. 4π‘Ž − 𝑦
C. 3π‘Ž − 𝑦 − 6𝑏
D. 4π‘Ž + 𝑦 + 6𝑏
39. Find the value of A if A=12(a+b)h given that π‘Ž = 2, 𝑏 = 3 π‘Žπ‘›π‘‘ β„Ž = 4
A. 12
B. 8
C. 10
D. 16
40. Simplify (π‘₯ + 𝑦)2 − 2π‘₯𝑦
A. π‘₯2 + 𝑦2
B. π‘₯2 + 𝑦2 + 2π‘₯𝑦
C. π‘₯2 − 𝑦2
D. π‘₯2 − 𝑦2 + 2π‘₯𝑦
41. If A = {2,4,6} find 𝑛𝑃(𝐴)
A. 12
B. 8
C. 16
D. 14
42. Given that A = {2,4,6,8} and B = {2,4,5,6,7,8,9,10} then 𝐴𝑛𝐡 is
A. {2,4,6,8}
B. {2,4,6,7,8,9,10}
C. {2,4,8}
D. A = {2,6,8}
43. In indicial form log2x=6 is
A. 2π‘₯ = 6
B. π‘₯2 = 6
C. 62 = π‘₯
D. 26 = π‘₯
44. Make r the subject of the formula if 𝑉 = πœ‹π‘Ÿ2β„Ž
A. vπh

B. vπh

C. (Vπh)

D. hπV3
45. Solve for π‘₯ if π‘₯2+x-6= 0
A. -2 and -3
B. 2 and 3
C. 2 and -3
D. -2 and 2
46. Factorize the expression 6π‘₯2 + 7π‘₯ − 5
A. (2π‘₯ + 1)(3π‘₯ + 5)
B. (2π‘₯ − 1)(3π‘₯ + 5)
C. (2π‘₯ − 1)(3π‘₯ − 5)
D. (2π‘₯ + 1)(3π‘₯ − 5)
47. Construct a quadratic equation whose roots are 1 and 2
A. π‘₯2 − 3π‘₯ + 2
B. π‘₯2 + 3π‘₯ − 2
C. π‘₯2 − 3π‘₯ − 2
D. π‘₯2 + 3π‘₯ + 2
48. P˄Q is true if
A. P is F and Q is F
B. Q is T and P is F
C. P is T and Q is T
D. P is F and Q is T
49. Factorize 4π‘₯2 − 9
A. (2π‘₯ + 3)(2π‘₯ − 3)
B. (2π‘₯ + 3)(2π‘₯ + 3)
C. (2π‘₯ − 3)(2π‘₯ − 3)
D. (4π‘₯ + 3)(4π‘₯ − 3)
50. Make f the subject of the formula in 𝑉 = π‘ˆ + 𝑓𝑑
A. V-Ut
B. U-Vt
C. 𝑑(𝑉 + π‘ˆ)
D. VU-t
51. logaN=x implies
A. π‘₯π‘Ž = 𝑁
B. 𝑁π‘₯ = π‘Ž
C. π‘Žπ‘₯ = 𝑁
D. π‘Žπ‘ = π‘₯
52. A circumcircle is a circle that is drawn to touch the three vertices of a given triangle
A. true
B. false
53. The simple statements combined to form a compound statement are called
A. consequent statements
B. logic statements
C. component statements
D. index statements
54. What are the roots of the equation π‘₯2 − 6π‘₯ + 5
A. 1 and 1
B. 5 and -1
C. 1 and 5
D. -1 and -5
55. Find the antilog of 2.5456
A. 3.513
B. 0.3513
C. 351.3
D. 3513
56. Find the value of a if log39=a
A. 2
B. 1
C. 3
D. 4
57. If 8x – 4 = 6x -10, find the value of 5x
A. -35
B. -15
C. -3
D. 7
58. Two sets are disjoined if
A. they are both empty
B. Their union is an empty set
C. Their intersection is an empty set
D. One of them is a subject of the other
59. Given 𝑉 = π‘ˆ + 𝑓𝑑 find U when 𝑉 = 20, 𝑓 = 5,𝑑 = 3
A. 4
B. 3
C. 5
D. 2
60. Simplify (13𝑝 − 6𝑝 − 3π‘ž)
A. . 3𝑝 − 19π‘ž
B. . 7𝑝 − 3π‘ž
C. . 3π‘ž − 8π‘ž
D. . 7𝑝 + 3π‘ž
61. Adding 42 to a given number gives the same result as squaring the number. Find the number
A. 14
B. 13
C. 7
D. 6
62. The dimensions of a rectangular tank are 2m by 7m by 11m. If its volume is equal to that of a cylindrical tank of height 4cm, calculate the base of the cylindrical tank.
A. 14m
B. 7m
C. 312m
D. 134m
63. A sector of a circle with a radius of 6cm subtends at an angle of 60° at the centre. Calculate its perimeter in terms of πœ‹.
A. 2(πœ‹ + 6)π‘π‘š
B. 2(πœ‹ + 3)π‘π‘š
C. 2(πœ‹ + 2)π‘π‘š
D. (πœ‹ + 12)π‘π‘š
64. Simplify 3x-yxy-2x+3y2xy+12
A. 4x+5y+xyxy

B. 5y-4x+xy2xy

C. 5y+4x-xy2xy

D. 4x+5y-xy2xy
65. Find the value of p if 14p+3q=10 and 2p-13q=7
A. 4
B. 3
C. -3
D. -4
66. What is the surface area of a cube of edges 12cm
A. 900π‘π‘š2
B. 864π‘π‘š2
C. 600π‘π‘š2
D. 144π‘π‘š2
67. Given a cuboid of edges 3cm, 5cm, and 8cm, calculate the surface area
A. 158π‘π‘š2
B. 200π‘π‘š2
C. 253π‘π‘š2
D. 16π‘π‘š22
68. What is the capacity of a bucket that is 42cm deep and the inner radii of the base and topmost part of the bucket is 12cm by 20cm respectively.
A. 34.5liters
B. 50 liters
C. 120 liters
D. 42 liters
69. Given the set of data 5,4,8,3,7,9,5,3,4,6,9,9. Find the mean of the set of data.
A. 4
B. 5
C. 6
D. 7
70. Given that tanθ=512 calculate sinθ
A. 613

B. 135

C. 513

D. 1213
71. A ladder 11m long leans against a wall with its base resting on the level ground 3m away from the wall. How high up is the top of the ladder from the ground?
A. 12.9m
B. 22m
C. 11.9m
D. 10.6m
72. Make s the subject of the formula V=KT-S
A. S=VTT
B. S=T-K2V2
C. S=K2V2-T
D. S=K2V2-T2
73. Solve the equation 3x4+x3=712
A. 13
B. 7/13
C. 5/12
D. 15.5
74. If tanθ=34, evaluate cosθ+3sinθ
A. 235

B. 125

C. 512

D. 35
75. Calculate the perimeter of a sector of a circle radius of 14cm, where the sector angle is 80°.
A. 49cm
B. 42.7cm
C. 53cm
D. 19.75 cm
76. Factorise 2π‘₯2 + 5π‘₯ + 3
A. (π‘₯ + 1)( π‘₯ + 32)
B. (π‘₯ − 1) (π‘₯ − 32)
C. (π‘₯ + 1)(2π‘₯ + 3)
D. (x−2)(π‘₯ − 3)
77. Convert 6D4F16 to base ten
A. 2798310
B. 92810
C. 599810
D. 1111610
78. If A = {car, table, shirt} and B = {yam, rice, bread}. Find AB
A. {car, table, shirt, yam, rice, bread}
B. {yam, car}
C. ∅
D. πœ‡
79. Y is inversely proportional to π‘₯, when π‘₯ is 2cm, y is 18cm. Find the value of y when π‘₯ is 24
A. 4
B. 48
C. 12
D. 1.5
80. Find quadratic equation whose roots are 23 and -1
A. 2π‘₯2 + 3π‘₯ − 4 = 0
B. 3π‘₯2 + π‘₯ + 1 = 0
C. 2π‘₯2 − 3π‘₯ − 1 = 0
D. 3π‘₯2 + π‘₯ − 2 = 0
81. Calculate the surface area of the figure below:
A. 100π‘π‘š2
B. 220π‘π‘š2
C. 300π‘π‘š2
D. 108π‘π‘š2
82. Solve3x=181
A. 0
B. -2
C. -3
D. -4
83. Evaluate log1035+log102-log107
A. 1/2
B. 1
C. π‘™π‘œπ‘”10√30
D. 12log1030
84. Given that M = {𝑋: −4 ≤ 𝑋 < 7},Find ∩ (𝑀)
A. 9
B. 10
C. 11
D. 12
85. Calculate the length of a chord of a circle, radius 8cm subtends an angle of 60° at the centre of the circle.
A. 8cm
B. 9cm
C. 10cm
D. 11cm
86. A parallelogram has an interior angle of 72°. Find the angle which is opposite the angle 72°
A. 108°
B. 144°
C. 72°
D. 18°
87. The length of a rectangle is three times its width. If the perimeter is 72cm, calculate the width of the rectangle.
A. 9cm
B. 18cm
C. 24cm
D. 36cm
88. Find the volume of a cone if the perpendicular height is 9cm and the radius is 4cm
A. 150.86cm3 .
B. 120.44cm3
C. 150cm3
D. 140cm3
89. Calculate the perimeter of a sector of a circle radius of 14cm, where sector angle 60°
A. 42.7cm
B. 50.0cm
C. 35cm
D. 100cm
90. The area of a square is R cm2. Write down an expression for half of its perimeter
A. 4√𝑅 cm
B. 3√𝑅 cm
C. 2√𝑅 cm
D. R cm

Comments

Popular posts from this blog

90 Objective Examination Questions in Major Subjects

Complete Computer Studies/ICT Curriculum for JSS 1 to SSS 3

JSS One Objective Questions in Computer Studies/Information Technology